svgp_model
SVGP
Bases: gpytorch.models.ApproximateGP
Stochastic Variational Gaussian Process (SVGP) Regression Model.
A scalable Gaussian Process (GP) model based on stochastic variational inference. Inherits from the gpytorch.models.ApproximateGP class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inducing_points |
torch.Tensor
|
Inducing points tensor. |
required |
dtype |
torch.dtype
|
Data type of the model. Defaults to torch.float32. |
torch.float32
|
device |
torch.device
|
Device can be specified to the desired |
None
|
Attributes:
Name | Type | Description |
---|---|---|
mean_module |
gpytorch.means.ConstantMean
|
Constant mean module. |
covar_module |
gpytorch.kernels.ScaleKernel
|
Scaled RBF kernel. |
Source code in uncertaintyplayground/models/svgp_model.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|
forward(x)
Forward pass for the SVGPRegressionModel.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
torch.Tensor
|
Input tensor. |
required |
Returns:
Type | Description |
---|---|
gpytorch.distributions.MultivariateNormal: Multivariate normal distribution with the given mean and covariance. |
Source code in uncertaintyplayground/models/svgp_model.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
|