Bases: unittest.TestCase
Unit test suite for the BaseTrainer class.
This class contains a series of methods to test the functionalities of BaseTrainer, including preparing the data loader.
Attributes:
Name |
Type |
Description |
X_train |
torch.Tensor
|
A tensor of feature vectors for the training data. |
y_train |
torch.Tensor
|
A tensor of target values for the training data. |
sample_weights_train |
torch.Tensor
|
A tensor of sample weights for the training data. |
trainer |
BaseTrainer
|
The BaseTrainer instance to test. |
Source code in uncertaintyplayground/tests/test_base_trainer.py
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 | class TestBaseTrainer(unittest.TestCase):
"""
Unit test suite for the BaseTrainer class.
This class contains a series of methods to test the functionalities of BaseTrainer, including preparing the data loader.
Attributes:
X_train (torch.Tensor): A tensor of feature vectors for the training data.
y_train (torch.Tensor): A tensor of target values for the training data.
sample_weights_train (torch.Tensor): A tensor of sample weights for the training data.
trainer (BaseTrainer): The BaseTrainer instance to test.
"""
def setUp(self):
"""
Setup function that runs before each test method.
This method generates random data for the tests and initializes an instance of BaseTrainer.
"""
self.X = torch.randn(100, 20)
self.y = torch.randn(100)
self.batch_size = 10
self.test_size = 0.2
self.sample_weights = torch.randn(100)
self.trainer = BaseTrainer(self.X, self.y, self.sample_weights, batch_size=self.batch_size, test_size= self.test_size)
def test_prepare_dataloader(self):
"""
Tests the prepare_dataloader method of the BaseTrainer class.
This test prepares the data loader and checks that it has the correct length and batch size.
"""
self.trainer.prepare_dataloader()
self.assertEqual(len(self.trainer.train_loader) * self.batch_size, len(self.trainer.X_train))
for batch in self.trainer.train_loader:
self.assertEqual(batch[0].shape, (self.batch_size, self.X.shape[1]))
self.assertEqual(batch[1].shape, (self.batch_size,))
self.assertEqual(batch[2].shape, (self.batch_size,))
|
setUp()
Setup function that runs before each test method.
This method generates random data for the tests and initializes an instance of BaseTrainer.
Source code in uncertaintyplayground/tests/test_base_trainer.py
18
19
20
21
22
23
24
25
26
27
28
29 | def setUp(self):
"""
Setup function that runs before each test method.
This method generates random data for the tests and initializes an instance of BaseTrainer.
"""
self.X = torch.randn(100, 20)
self.y = torch.randn(100)
self.batch_size = 10
self.test_size = 0.2
self.sample_weights = torch.randn(100)
self.trainer = BaseTrainer(self.X, self.y, self.sample_weights, batch_size=self.batch_size, test_size= self.test_size)
|
test_prepare_dataloader()
Tests the prepare_dataloader method of the BaseTrainer class.
This test prepares the data loader and checks that it has the correct length and batch size.
Source code in uncertaintyplayground/tests/test_base_trainer.py
31
32
33
34
35
36
37
38
39
40
41
42
43 | def test_prepare_dataloader(self):
"""
Tests the prepare_dataloader method of the BaseTrainer class.
This test prepares the data loader and checks that it has the correct length and batch size.
"""
self.trainer.prepare_dataloader()
self.assertEqual(len(self.trainer.train_loader) * self.batch_size, len(self.trainer.X_train))
for batch in self.trainer.train_loader:
self.assertEqual(batch[0].shape, (self.batch_size, self.X.shape[1]))
self.assertEqual(batch[1].shape, (self.batch_size,))
self.assertEqual(batch[2].shape, (self.batch_size,))
|